
SEIR Program Suite Description and Instructions

Program Overview

The SEIR suite contains four Matlab programs, one that implements the mathematical model, one
that runs a test on that implementation, and two that use it to set up virtual experiments.

seir sim.m is a function program that accepts input data called from a keyboard command or a
script file and produces a table of results for the class counts in each day. The input parameters
include β, η, and γ along with parameters that indicate the initial fractions of the infected and
removed classes.

SEIR simtest.m is a script that runs one simulation using seir sim.m. A single plot shows the
susceptible, latent, infectious, and removed fractions of the population for a given scenario. Sce-
narios are specified using the basic reproductive number, the average durations of the latent and
infectious phases, and the initial infectious and removed fractions.

SEIR simplot.m is a script that uses seir sim.m to prepare a set of plots that show the time
history of the scenario. Two plots show the susceptible and infected populations over time.

SEIR paramstudy.m is a script that uses seir sim.m to prepare a set of plots that show how
certain key quantities change when one of the parameters is varied:

1. The maximum fraction of infected individuals;

2. The time when the maximum number infected is reached;

3. The final percentage still at risk at the end of the outbreak;

4. The number of days before the total of infected people is below a target threshold.

Getting Started

We assume here that the reader already knows how to use the Matlab editor to create and execute
a script file, which is a set of instructions to be executed according to a prescribed flow of control.
No significant programming experience is required. Users should start with SEIR simtest.m, which
is designed to ensure that the main program is functioning correctly and to provide an easy entry
into Matlab programming.

SEIR simtest.m is a very simple program, with no programming structures such as loops or con-
ditionals. It contains only 29 lines of code, along with section dividers (lines that start with %%),
comments (lines that start with %), and blank lines.

The lines in the SCENARIO DATA, COMMON DATA, and COMPUTATION sections are simple
assignment statements. These are statements of the form “name=value” that assign either a specific
value or a value computed from a formula or function to the name. The scenario is defined in the
SCENARIO DATA section. This is the only section in the program that the user needs to change.
This structuring is good programming practice, as it means that all of the lines that need to be
specified for a scenario are grouped together, while other blocks of code contain only lines that do
not need to be changed when the scenario changes.

1



Line 45 is a call to the seir sim function. This function resides in the separate file seir sim.m, which
must be in the same directory as SEIR simtest.m. The function call uses the name of the function
followed by a list of arguments in parentheses. The function file uses these arguments in place of
simple assignment statements. Its output consists of lists giving the time histories of the three
state variables. Lines 47-48 compute a vector of new infections by subtracting the following day’s
susceptible count from the current day’s.

Lines 36-38, and 54-61 are graphics statements. It is always a good idea to start a graph with
“clf” and “hold on”, which clear out any old graph and tell Matlab not to erase any subsequent
plots without special instructions to do so. The “opengl” statement avoids some graphics bugs that
occur on some computers. The plot statements require the horizontal and vertical components of
the data, along with any options. These options consist of a pair of specifications, one for the
plotting parameter to be controlled and the other for the value to be used. The default plot lines
are too thin for most presentation purposes, so it is often good to set the line width to be some value
between 1.4 and 1.7, inclusive. Some graph properties, such as axis labels, are best set in subsequent
lines, as is done in lines 58-59. Where desired, one can use the “legend” function to specify which
curve is which. The arguments to be given are a list of character strings followed by any optional
properties. Usually Matlab makes a good choice of location without the programmer’s help, but it
is often best to specify where you want the legend using direction names such as “Northeast”.

Lines 63-65 produce the text output for the program. The single quotation mark appended to
“times” converts that variable from a row vector to a column vector; the definition of “results”
makes a row of column vectors. The last two program lines give the maximum infectious fraction
and the final susceptible fraction.

SEIR simtest.m can be used to run any scenario for the SEIR epidemic model simply by changing
the four lines in the scenario data section. Sometimes you will want to tinker with graphics
statements to improve the appearance and/or design of a plot.

Using SEIR simplot and SEIR paramstudy

The scripts are constructed so that they can be applied to different experiments with a minimum
of changes. These changes are identified in the comments of the script files, and are described here
in more detail.

It is important to understand the logical structure used to organize these programs. Each is
subdivided into sections with a particular name and purpose.

1. The scripts begin with some brief documentation that describes the program and how to use
it and, most importantly, identifies the particular version of seir sim that it has been tested
on. The script may work with newer or older versions, depending on what changes were
made, but one should not expect this.

2. The first programming section contains default scenario data, which are the values that will be
assumed for the parameters to be used as input values for seir sim if that particular parameter
is not the experiment parameter. These default values may need to be changed, depending
on the experiment.

3. The next section contains the data for the experiment parameter, described in the program as
the “Independent Variable”. The program is designed to require minimal changes for different
experiments; most of those changes are in this section.

2



(a) First, the set of parameter values to be used for the independent variable must be
specified with a generic name. The actual parameter you have chosen will be identified
elsewhere.

i. The values are listed in SEIR simplot under the generic name “xvals” and are speci-
fied individually using Matlab syntax for a row vector or list. Each of the parameter
values in this list will generate its own set of curves in the three-panel plot. Generally
a set of 3 to 8 values is best.

ii. In SEIR paramstudy, the independent variable values are used as the horizontal
coordinate on each plot, so a much larger set is necessary. The user specifies the
first value, the last value, and the count of values, keeping in mind that the end
point values are both counted. For example, if you want the values 0, 0.05, 0.1, and
so on up to 1.0, you choose first=0, last=1, and N=21, dividing the interval from 0
to 1 into 20 equal parts.

(b) The set of values is the only thing that needs to be defined in the INDEPENDENT
VARIABLE DATA section of SEIR simplot. SEIR paramstudy also requires the user
to specify the name of the parameter to be used as the horizontal axis label. This
specification only applies to the graph; so far the program does not know which of the
parameters is to take on the values predefined using first, last, and N.

4. Next comes the INITIALIZATION section, which does basic housekeeping tasks such as
setting up the plot windows and defining any data structures needed for the data.

5. The programs conclude with sections for computation and output, with the graphs being
created in the computation section if they occur inside a loop or in an output section if they
are only produced after all the data is collected.

6. The key to the program structure is that each parameter has a default value that will be used
in all scenarios, except that one of the parameters will instead use the values specified either
as xvals or using first, last, and N. The function call requires one value to be passed in for
each of the parameters. The first line inside the main program loop identifies the name of the
parameter whose values were defined in the Independent Variable section. This line overwrites
the previous value each time through the loop; meanwhile, the other parameters have only
been given default values, so these are also used. The default value for the independent
variable parameter is never used, but having it specified in the data section allows for a
minimum of changes as the program is repurposed for a new experiment.

7. Under some circumstances, the user might want to tinker with the details of the plot speci-
fications, perhaps by overriding Matlab’s choice of axis limits, modifying a legend, or adding
text. Generally, the graphs produced by Matlab’s automatic routine will be reasonably well
designed.

3



SPUR modifications

Addressing questions about the impact of isolation of individuals with symptoms requires a more
sophisticated model, such as the SPUR model described in the Student Notes. These changes
are needed to convert the SEIR programs to SPUR. Start by saving copies of SEIR simtest.m
and SEIR paramstudy.m as SPUR simtest.m and SPUR paramstudy.m. Then make the indicated
changes.

For spur sim:

1. Change the function output list to [S,I,R] and the argument list to
(beta,sigma,gamma,I0,q,V,target).

2. In INITIALIZATION, change the definition of results to have four columns instead of three.
After the definition of results, add these lines to calculate P0 and U0:

b = beta-sigma+gamma;

c = -(1-q);

rho = (sqrt(b.\^2-4*beta*c)-b)/(2*beta);

P0 = I0/(1+rho);

U0 = rho*P0;

Also delete -E0 from the formula for S0 and change the formula for Y to Y = [S0,P0,U0];

3. In COMPUTATION, delete the formula for E and change the formula for I to
results(:,2)+results(:,3).

4. Change the FUNCTION FOR THE DIFFERENTIAL EQUATION to match the model given
in P1-2, Student Notes. This will require you to change the splitting of components to reflect
the variable order S-P-U, add a line I=P+U, replace the formulas for Ep and Ip with two
formulas for Pp and Up, and change the assembly line to use the derivatives Pp, and Up

instead of Ep and Ip.

For SPUR simtest:

1. In SCENARIO DATA, set R0=5, delete the TL, TI, and E0 lines, and add assignments Tp=2,
T=10, and q=0.5.

2. In INITIALIZATION, and gamma=1/(T-Tp) before the formula for beta.

3. In COMPUTATION, change the eta line to read sigma=1/Tp;, change the formula for gamma
to 1/(T-Tp);. Also change the function call to match the function name and argument list
of spur sim.

4. Run SPUR simtest to make sure everything works. Error messages referring to the compu-
tation line indicate errors in spur sim. After you fix these, rerun SPUR simtest until the
program works.

5. It is a good idea to update the comments in the programs. This makes it easier to understand
programs you haven’t looked at in a long time.

4



For SPUR paramstudy:

1. Modify DEFAULT SCENARIO DATA and COMPUTATION in the same way as in SPUR simtest.

2. Set the experiment to vary the parameter q from 0 to 1.

5


